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Abstract

Enhancing the resilience of healthcare systems in the face of successive
disruptions has become increasingly important, particularly in light of the COVID-
19 pandemic. Currently resilience is defined as the system’s capacity to absorb,
recover from, and adapt to disruptions. However, despite more than 50 years of
research in this field, empirical evidence and mathematical tools to quantify
adaptive capability - the ability to learn from previous disruptions to enhance
system future performance - remains lacking. We propose a quantification
framework for measuring system resilience and adaptability and then apply it to
billions of electronic medical records (EMR) across United States. Our analyses
reveals that healthcare systems went through two significant successive
disruptions, showed substantial adaptabilty but only moderate levels of
resilience. Furthermore, Black and Hispanic groups consistently endured severe
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Methodology

Data
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A data collection platform with more than 60
million patient records a year
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Data access provided by the COVID-19
Research Database

We then analyze how patient visits for different services and populations were affected by
the pandemic

Quantification Framework

We fit our beta function to detected disruptions and measuring how long it takes for a system
to return to expected values.

Expected Patient Visits: P(t)
Based on prepandemic trends

Beta Equation
(6 + 9)%+?

Results

Table 1. Successive disruptions on healthcare system from 2020 to 2022. We classify the healthcare
system as 'Not recovered’ if the observed non-COVID-19 patient visits keep less than 90% of the
expected counts.

Percentage

Disruptions

Once

Twice | ==Triple

Not recovered (1st disruption)

Not recovered (2nd disruption)

States |

All

10.2%

89 8%

(%

48.9%

87.8%

19

Chronic Disease Treatment
Maternal Service

6.6%
0%

86.6%
100%

6.6%
0%

56.6%
88.8%

93.5%
94.4%

30
18

Asian
Black
Hispanic
White

0%
0%
2.5%
2.1%

100%:
100%
94 8%
97 .8%

(0%
0%
2.5%
0%

42.4%
44.1%
35.9%
39.5%

Q0. 1%
94, 1%
87.1%
87.2%

33
34
39
47

Analysis of Racial Groups
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Conclusion

Correlation Analysis

to Pandemics

Table 2. Pearson correlation coefficients assessing the relationships between system adaptivity/resilience
and pandemic severity, physician shortages, and socioeconomic factors in U.S. states. Significant
correlations, indicated by a P-value less than the threshold of 0.05, are highlighted.
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disruptions and were less resilient than White and Asian groups. We find that O(t) = P(t) — a
physician abundance is the key characteristic for determining healthcare system
responses. Our results offer vital guidance in designing resilient and sustainable
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disruption rate

Asian (1st disruption) 0.09(0.08 to 0.10)
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Hispanic (lst disruption) .08(0.07 to 0.09)
Hispanic (2nd disruption) .05(0.03 to 0.06)
White (1st disruption) .09(0.08 to 0.10)
White (2nd disruption) .05(0.04 to 0.06)
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Major Take Aways

N

- 90% of states faced two consecutive disruptions.

- Secondary disruption tend to be longer and larger, with a lower disruption rate.
This is a sign of good adaptability

- 50% of states didn't recover from the first disruption

- 87.8% states didn't recover from the second disruption
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Normalized patient visits
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Hispanic (lst disruption) 0.04(0.03 to 0.05)
Hispanic (2nd disruption) 0.04(0.03 to 0.05)
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- Michigan and New York have the highest resilience scores

- Wyoming and Louisiana have the lowest resilience scores and negative adaptability
indices.

- Asian populations demonstrated the highest levels of resilience, followed by White, Black
and Hispanic groups having the least resilience.

- 86.6% of chronic disease treatment services and 100% of maternal services experienced
two disruptions.

- Maternal care had lower resilience and more severe disruptions.

Unprecedented Burdens on Healthcare Systems
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- Positive correlation between states' resilience index and physician abundance (0.34,
P=0.012)

- Resilience has negative correlations with local poverty (-0.32 P=0.019) and unemployment
(-0.42 P=0.002).

- Resilience indices are negatively correlated with state SVI (-0.46 P=0.001)

- Physician workforce abundance is key for healthcare resilience and adaptivity

- States with low physician abundance, high poverty, and unemployment are less resilient

and less adaptive

- New resilience and adaptivity indices address limitations of existing indices

®  Observed patient visits O(f)

Amplitue %,
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Essential healthcare services were disrupted.

== Expected patient visits if no crisis occurs P(f)

For Example: 9.4 million cancer treatments and screenings were delayed or canceled...
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What is the Resilience and Adaptability of Healthcare Systems? B ot

Resilience Analysis of Services
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Applied to millions of patient records across states, services and racial groups.
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Current research lacks quantitative tools measuring adaptability.
We hope to remedy this
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